Towards a V&V Hierarchy for Fatigue Crack Growth Lifetime Analysis

ASTM E08.04 Workshop Verification and Validation of Life Prediction Software Phoenix, Arizona May 9, 2012

Craig McClung Southwest Research Institute San Antonio, Texas

Current Lifing Models Contain An Unprecedented Level of Detail

But How Credible Are These Models for Decision Making?

Credibility from Model V&V

Verification

- Credibility from understanding the mathematics
- Are the equations being solved correctly?
- Compare computed results to known solutions
- Validation
 - Credibility from understanding the physics
 - Are the correct equations being solved?
 - Compare computed results to experimental data
- Uncertainty Quantification
 - Credibility from understanding the uncertainties
 - How accurate is the model prediction?
 - Quantify uncertainty & variability from all sources

Model Verification & Validation

• Verification: Process of determining that a model implementation accurately represents the developer's conceptual description of the model and the solution to the model

Math issue: "Solving the equations right"

• Validation: Process of determining the degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model

Physics issue: "Solving the right equations"

V&V Framework

Reality of Interest

(Component, Subassembly, Assembly, or System)

Abstraction

 Approach based on ASME V&V 10-2006

Revise

Appropriate

Model

or

Experiment

Validation Hierarchy

Validation Hierarchy

- Validation hierarchy adds credibility:
 - > Breaks the problem into smaller parts
 - Validation process employed for every element in the hierarchy (ideally)
 - Allows model to be challenged (and proven) step by step
 - Right answer for right reason
- First establish intended use and toplevel validation requirement
- Construct hierarchy, establish sub-level metrics and validation requirements
- In general, validation requirements will be increasingly more stringent in lower levels
 - Full system sensitivity analysis can provide guidance

How NOT to do V&V of FCG Life Calculations

Copyright ©2012 Southwest Research Institute

Draft Hierarchy for FCG Lifetime Analysis

Sub-Hierarchy for Geometry Model

Sub-Hierarchy for Stress Model

Sub-Hierarchy for Crack Driving Force Model

Sub-Hierarchy for Environment Model

Sub-Hierarchy for Material Model

Sub-Sub Hierarchy for Test Methods/Measurements

Matrix for Material Crack Growth Properties/Models

aterial Crack Growth	ר Pro	perti	es/l	Models
	R	Т	t	chem
Paris regime	Х	Х	Х	Х
Threshold	Х	Х	Х	Х
Instability		Х	Х	Х
Load interaction	Х	х	х	Х

Sub-Hierarchy for Material Model

Sub-Hierarchy for Life Calculation Model

Detailed Draft Hierarchy for FCG Lifetime Analysis

Copyright ©2012 Southwest Research Institute

For Each Element...

• Verification

- Code Verification
 - Detect/eliminate algorithmic/programming errors
- Calculation Verification
 - Numerical precision and discretization accuracy

Validation

- Direct comparison with tailored validation experiments
- Do uncertainty quantification of both model and experiment
- Any calibration should be kept <u>separate</u> from validation and performed <u>before</u> validation

What is Most Significant?

- The relative significance of the different sub-models depends on the intended use of the life model
- For a given situation, some [many] sub-models may be trivial or insignificant
- Sensitivity analysis based on uncertainty quantification can be used to identify the most significant sub-models

Some Observations on One Element: K Solution

Copyright ©2012 Southwest Research Institute

Some Observations on One Element: K Solution

- Verification of weight function K solutions by comparison to independent 3D numerical solutions
- No direct experiment
- What is absolute truth?
- How to cover entire range of solutions?

Copyright ©2012 Southwest Research Institute

What To Do Next?

- This draft hierarchy is incomplete and imperfect
 - Further iteration is needed to improve it
 - Some sub-models may need to broken down into finer sub-sub-models
 - Additional interdependencies may need to be flagged
- Additional questions need to be asked
 - How best to isolate each individual model? (usually from the bottom up)
 - How best to quantify the validation?