DEFENCE

Selection of Validation Parameters Suitable for Computational Weld Mechanic Simulations

Christopher Bayley DRDC Atlantic / DLP Victoria, BC

John Goldak Goldak Technology Inc. Ottawa, ON

May 2012

Overview

- Motivation
 - Computational Weld Mechanics
 - Overview of the Weld Overlay Program

DEFENCE RD DÉFENSE

- Defining What is Good Enough
- Examples of Validation Parameter Data
- Discussion

Project Motivation

1. Develop an understanding of whether past weld repairs have influenced structural performance.

, DÉFENSE

DEFENCE

2. Development of future weld build-up standards.

Computational Welding Mechanics

- (Un) Coupled multi-physics simulations:
 - Involves temperature dependent material properties
 - Mechanical (Flow stress, Elastic Modulus, ...)
 - Thermal (Conductivity, thermal expansion, ...)
 - Morphology (Phase changes,)
 - Involves Heat generation
 - Are time and path dependent due to the deposition of weld metal
 - Have additional thermal boundary conditions
 - Convection and conduction must be considered.

DEFENCE

Weld Modelling Features

- Goldak Technology Incorporated VrWeld (www.goldaktec.com/vrweld.html)
- Involves separate thermal, microstructural and structural simulations.
- Pass-by-pass fill sequence used to capture non-symmetrical deformation.
- Material property selection tied to chemical composition.
 - Thermally dependent material properties
 - Microstructural predictions

Verification and Validation

- Verification
 - Ensuring mathematical representation of the physical phenomena is correctly implemented
 - Responsibility of the Code Developer
- Validation
 - Requires an estimate of the difference between experimentally measured parameters and a computational model.
 - Requires the selection of physically relevant criteria

Defining what is "Good Enough"

- Dependent on the modelling objectives:
 - Absolute predictions (i.e. Prediction of critical weld distortion) requires greater accuracy
 - Relative Predictions (i.e. Minimization studies associated with procedure variations) requires greater precision
- Is a transient validation required if all that is of interest is the final equilibrated state?

Overview of Weld Build-Up Program

	Outcome	How
Weld procedure optimization	 Understanding how welding influences distortion and residual stresses Serve as basis for verification and validation 	CWM and Experimental
Weld procedure qualification	DefStan 02-770 Parts A&B	Experimental
Weld overlay standard development	 Weld area size limitations Area location limitations 	CWM

Types Validation Parameters

	Transient •Single Point Measurements	Iso-Static •Multiple Point Measurements
Temperature	Thermocouple	-
Displacement	LVDT	Digital Image Correlation
Strain	Strain Gauge	Digital Image Correlation
Residual Stress	-	Diffraction (Neutron/X-ray)
Microstructure	-	Micro Hardness

Examples of Validation Samples

Picture Frame Temper Bead Study

Bead On Plate

Cylinders

	# Samples	Transient Distortion	Transient Strain	Transient Temp.	Iso-Static Residual Stress	Iso-Static Micro- Structure
Picture Frame	2	No	Yes	Yes	Yes	No
Bead on Plate	4	Yes	Yes	Yes	No	No
Cylinders	8	No	Yes	Yes	No	No
Temper Bead Study	3	No	No	Yes	No	Yes

Transient Instrumentation - Temperature

- Peak temperature is highly dependent on relative location to heat sources
- Correctly capturing measurement location as important as the data itself

DÉFENSE

DEFENCE

Transient Instrumentation - Displacement

- EMF associated with welding arc marks the welding start and stop
- Convenient to mark the incremental change in strains associated with each pass

Transient Instrumentation - Strain Orientation

- Strain sensitive to relative distance between sensor and heat source
- Monitoring strain more sensitive than displacement

> Temper Bead Study 0.8 kJ/mm, AWS 9016 Consumable

Relevance of Microstructural Predictions

Iso Static - Residual Stress Predictions

Longitudinal Stress Component Along Weld

StressNocial(MPa) 650. 600. 550. 500. 450. Predicted 400. 350. 300. 250. 200. 150. 100. 50.0 0.00 Difference -50.0 - 100. -150. -200. -250. -300.

Measured Neutron Diffraction

Iso-Static – Out of Circularity

Comparison of Validation Parameters

Transient Thermal Data

© Ensures that the thermal boundary conditions, weld start & stop, interpass time, heat input are satisfactorily captured

⊖Located within steep gradient

• Transient Strain Gauge Data

- © Sensitive to transient variations in local strain and thermal expansion and contraction associated with each welding pass.
- [©]Robust method for marking the weld start and stop
- ⊗Located within steep strain gradient,
- ⊗Errors compound over measurement timespan
- [©]Difficult to infer global behaviour for localized measurement

Comparison of Validation Parameters

• Transient Displacement Data

- © Single point data provides global response due to localized effects
- [©]Multi-point data from Digital Image Correlation superior
- [©]Applicable to structural performance

Iso-Static Residual Stresses

- Separation Experimental Challenges (sampling volume, sample preparation)
- \otimes Time, availability and cost

Comparison of Validation Parameters

• Iso Static Microstructural Hardness

Required input for process optimizationValidation for weld process parameters (Heat Input)

• Iso Static - Net Shape

[©]Path independent

[©]Applicable to structural performance

⊗No knowledge of when/why/where problems arose

Summary

- Validation
 - Requires an estimate of the difference between experimentally measured parameters and a computational model.
 - Selection of parameters is application dependent, but should include as many "outputs" as possible
 - Transient validations help confirm that solutions not fortuitous.
 - Determination of "Good Enough" dependent on application.

Summary

- Weld Overlay Distortion Not Intuitive
 - Welding induced strain and displacement not intuitively related.
 - Comparison between different configurations, weld areas, and boundary conditions not intuitive
 - Compounds difficulty in class wide area/location limitations as local boundary conditions influence distortion.
- Cylinder Collapse Simulations
 - Not adversely affected by Weld Overlay
 - Girth welds have a significant influence
 - Minor influence of weld metal composition

