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Simulation & 

Simulation Governance 

 What is simulation? 

• Simulation is a transformation of data D to the 
results of interest R.  

 

 

 What is simulation governance (SimGov)? 

• Simulation governance is the exercise of 
command and control over all aspects of D → R. 
 The procedures that must be established for the 

purposes of ensuring and enhancing the reliability of 
predictions based on numerical simulation. 
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D → R 



Simulation & 

Simulation Governance 

 How does SimGov exercise command & control? 

• Establishes and enforces rules by which D is 
collected, verified, recorded and archived. 

• Ensures that the transformation D → R is based on 
established principles and procedures of 
computational science.   

• Ensures that the analysts are properly qualified. 

• Establishes protocols for the incorporation of new 
information to continuously improve the simulation 
process. 

• Utilizes standard analysis processes whenever 
possible. 
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Simulation & 

Simulation Governance 

 Why is SimGov important?  

• Properly exercised, SimGov will provide 

 Reduction of reliance on physical testing 

 Improved reliability of predictive performance of 

simulation tools 

 Improved design and decision-making 

• Properly exercised, SimGov will provide 

substantial economic benefits 

 Prevent expensive retrofits 

 Improve product life cycle management 
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Simulation & 

Simulation Governance 

 Key technical requirements of Sim Gov: VVUQ 

• Verification: Control of the errors of approximation.  

 This includes Code Verification, Solution Verification and 

Verification of Input Data. 

• Validation: Quantitative assessment of the predictive 

accuracy of a model. 

 Objective means for assessing the predictive accuracy of  

mathematical models by comparison of simulation results with 

experimental data. 

• Uncertainty Quantification: Evaluation of the effects 

that uncertainties in D have on the results of interest R. 

 Random (aleatoric) & Cognitive (epistemic) uncertainties. 
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Numerical simulation 

Validation 
 Numerical simulation involves the formulation of a mathematical 

model and its numerical solution. 

 

 

 

 

 

 

 

 

 A Validation assessment is well defined only in terms of the 

results of interest R and the accuracy needed for the use of the 

model. 
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 Solution Verification is a process by which it is ascertained that 

the results of interest R satisfy necessary conditions for 

acceptance.   

 

 

 

 

 

 

 In practice this means to verify that the results of interest are 

not sensitive to the mesh or the polynomial degree of elements. 

 Verification is a prerequisite to validation. 

Numerical simulation 

Verification 
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Errors  
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D → R 

Prediction 



Numerical simulation 

The process 
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Numerical simulation 

The process 
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Aspects of implementation 

Technical requirements 

 What is available and what is needed? 
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Numerical 

Simulation 

Traditional  
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Implementation 

FE Model 

Mixes model definition  

with the approximation 

FE Method 

Model definition separate 

from the approximation 

Quality Assessment Subjective Objective 

FEA  Results Analyst-dependent Analyst-independent 

Standardization Not supported Supported 



Aspects of implementation  

The finite element method 

Fundamental theorem in FEA (displacement formulation): 

 

 

where 

              h-version: hmax → 0, p-version: pmin →∞. 

 In practice hmax cannot be close to zero and pmin cannot be 
close to infinity.  
• Therefore it is necessary to design reasonable meshes and assign 

reasonable values for p. 

 The distinction between h- and p-versions is related to 
implementation rather than to the conceptual basis of FEA. 
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Aspects of implementation  

The finite element method 

 Mixing the “What?” (model definition) with the “How?” 

(approximation) 

• Definition of strain {e} adopted by traditional FEA implementations 

 

 

 

 

• Stiffness matrix (element-level) 

 

 

• This led to the development of large element libraries (element-

centric implementation). 
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Aspects of implementation  

The finite element method 
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“C3D20RHT: 20-node triquadratic displacement, trilinear 
temperature, hybrid, linear pressure, reduced integration.” 



 Reduced integration: What’s the problem? 

• Reduced integration was introduced because low-order elements 

were found to be “too stiff” and locking occurred. 

• It was found that when the number of quadrature points is 

reduced, then the elements become more “compliant”. 

 Unrealistic expectation: The error of approximation caused by low p-

values is always canceled by the error in integration. 

 Reduced integration elements are prone to instability (“hour-glassing”) 

 Users cannot control the errors caused by hour-glassing. 

 This type of elements makes solution verification very 

difficult. 

• Solution may not converge when hmax → 0. 

Aspects of implementation  

The finite element method 
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Aspects of implementation  

The finite element method 

 The software infrastructure required to support V&V 

must provide for 

• Hierarchic FE Spaces to control errors of approximation. 

• Hierarchic Modeling to assess errors of idealization. 

 Extraction procedures must be based on algorithms 

that exist independently from the mesh. 

• The data of interest (such as stress intensity factors, 

energy release rates, etc.) must converge to their exact 

values as the number of degrees of freedom is 

increased. 

May 2012 ESRD, inc. 16 



Aspects of implementation  

Computation of SIFs 

 Reliable prediction of crack growth and residual strength in 

metallic structures require accurate computation of SIFs. 

• Since analytical solutions for complex configurations are not available, 

estimates of SIFs have to be obtained by numerical methods. 

 There are many procedures for extracting SIFs from finite 

element solutions.  

• However, most implementations in commercial FEA software tools do 

not provide feedback information to assess the error of approximation.  

 The Contour Integral Method (CIM) provides for accurate 

extraction of SIFs for any crack configuration  

• Combined with hierarchic FE spaces provides convergence information 

in support of solution verification. 
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Computation of SIFs  

The contour integral method 
o The Stress Intensity Factor K1 is computed using a path-

independent Integral(*):  
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* Szabó, B. A. and Babuska, I. Finite Element Analysis, John Wiley and Sons, Inc. New York, 1991. 



Computation of SIFs 

The contour integral method 
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      and       are replaced by the finite element 

solution. 

 

 

 

 K1 converges to the exact value as the number of 

DOF increases (essential for solution verification).  
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Example of Solution Verification 

2D-SIFs for a CTS 

K1=60.79 ksiin  

Convergence information 

½ model (a = 5.0) 

24-element mesh 
R=0.15 
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Example of Solution Verification 

2D-SIFs for a CTS 

K1=60.79 ksiin  

Convergence information 

½ model (a = 5.0) 

24-element mesh 
R=0.15 

R=0.70 

K1=60.82 ksiin  
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Example of Solution Verification  

Thru-thickness crack 

¼ model 

3 layers of elements 

through the thickness 

Symmetry 

plane Free surface 

K1(2D)=60.8 ksiin  

Free surface 

K1 along crack front 

Symmetry plane 

Convergence  

information 



Example of Solution Verification  

Corner crack (K1 & K2) 
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crack 

Angle = 90o 

Angle = 0o 



T1 

T2 

ds 

 

 

d 

R x1 

x2 

 The mode I (GI), mode II (GII) and mode III (GIII) 

components of the strain ERR must be determined to 

formulate and validate mixed-mode failure criteria for the 

determination of onset of instability of interlaminar flaws. 

 The components of the energy release rate can be 

obtained using the separated J-integral: 

• Separated J-integrals(*) JI, JII, JIII  

• For linear elasticity are the same as GI, GII, GIII. 
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Aspects of implementation  

Computation of ERRs 

* Rigby, R. H. and M. H. Aliabadi, 1998. “Decomposition of the mixed-mode J integral-revisited”. 

International Journal of Solids and Structures, 35(17): 2073-2099. 

 







































e

e Rd
x

u
tdJ

M

iM

i

M

ij

M

ijM

ij

10

cos
M=I, II, III 

p’ 

A 

X1 
X3 

X2 

p 

s 



May 2012 ESRD, inc. 25 

Aspects of implementation 

The separated J-integral  

 The implementation of the J-integral decomposition combined 
with hierarchic finite element spaces obtained by p-extension on 
a fixed mesh provides the framework for solution verification. 

 

 

 

 

 The implementation of the J-integral in a hierarchic modeling 
framework allows the assessment of modeling assumptions in 
the results. 

 The next example demonstrates the use of hierarchic FE spaces 
and Hierarchic modeling in the assessment of delamination of a 
composite PI-joint. 
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Example 

PI-joint delamination 

 Computation of the ERR components along a 

delamination front of a Pi-joint specimen. 



May 2012 ESRD, inc. 27 

Fy=1000 lb 

Uy = 0 Uy = 0 

Problem Definition 

Red curve 

indicates the 

extent of the 

delamination 

3[0;90;-45;45]   3[45;-45;90;0] 

Local Ply Layup 

Pi-joint delamination 

Problem description 
 PI-joint specimen with an interlaminar thru-delamination between 

two 45 degree plies. 

• Loaded in three-point bending 

• Computation of GI along delamination front 



 Solution by p-extension (p=6 to 8) on a fixed mesh 
• Distribution of J1 along crack front (0<Z<1.0). 

• Convergence of J1 value at Z=0.5. 
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Z 

J1=12.36 lb/in @Z=0.5  

(1.8% estimated relative error) 

Circles 

represent 

point-wise 

extractions 

J1 distribution (GI) 

Deformed Shape 

of Delaminated 

Region (10:1) 

Pi-joint delamination 

ERR solution verification 

Full ply-by-ply 

modeling 
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Figure 1. Extraction of J1 Distribution Along Pi Joint Upper Delamination
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Concluding remarks 

 There are strong economic incentives for decreasing reliance on 

physical experimentation and increasing reliance on computed 

information. 

• Simulation Governance provides a framework for systematic, consistent 

and progressive improvement of the predictive capabilities of 

mathematical models.  

• Hierarchic spaces and models are essential for Verification and 

Validation 

• Verification refers to “Solving the equations right”, which means the 

proper selection of the mesh, the mapping and p-level (discretization). 

• Validation refers to “Solving the right equations”. Experiments should be 

used for assessing the predictive accuracy of  mathematical models. 

• A hierarchic modeling framework in the software infrastructure provides 

for proper control of the errors of idealization and discretization. 
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