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Agenda

Paper Objective

Predict and test validate Fatigue Crack Growth:

Constant Thickness Panel

Delay Crack Growth in service by design of Crenellated panels

Materials: Steel (S420M, S690QL)

Fracture toughness Determination (FTD)  Prediction

Fatigue crack growth (FCG) Prediction

Panels: Fatigue crack growth (a-N curve) Prediction 

Constant Thickness Panel

Delay Crack Growth in service by design of Crenellated panels

Comparison of analytical and experimental test results

Summary
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Metal Lifing Approach for unMetal Lifing Approach for unMetal Lifing Approach for unMetal Lifing Approach for un----notched, and   notched specimensnotched, and   notched specimensnotched, and   notched specimensnotched, and   notched specimens

• Part I: Fracture Toughness Determination
• Part II: Fatigue Crack Growth vs. stress Intensity factor 
• Part III: a) Fatigue Strength-Life (S-N), a-N; b) Creep Time (a-t), da/dt; c) Fatigue creep Interaction

References

1. B. Farahmand, “Fracture Toughness Determinations (FTD) and Fatigue Crack Growth”.  Book Chapter - “Composites, Welded Joints, 

and Bolted Joints” Kluwer Academic Publisher, 2000. 

2. Metal Probabilistic: Bob Farahmand, Frank Abdi, “Probabilistic Fracture Toughness, Fatigue Crack Growth Estimation Resulting From 

Material Uncertainties” ASTM Conference Paper 11569 November 6-7, 2002.

Three-Steps Fatigue Metal Approach
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Crenellation
• Crenellation as a novel solution to the growing fatigue crack 

– hence integrity problem has emerged aiming to retard a growing crack towards 

the stringer, which has initiated in parent material. 

– Growing fatigue crack perpendicular to reinforcements, considered as “worst 

case” design scenario for thin-walled welded structures.

• Joining stringers to main body of structure, by using two design
philosophies:
– differential design: requiring use of rivets

– integral design: requiring welding of the stringer to the main structure

Crack paths in uniformly stressed 

differential and integral structures

• In fracture mechanics, differential design is 
more advantageous, as a potential crack in 
main body of structure will continue extending 
under the stringer, 

– which may keep the stringer undamaged for a 
certain period 

– If a crack, evolves in a structure where stringer is 
joined by welding, 

• crack branching may occur leading to failure 
of stringer or separation of stringer from 
main structure
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Crenellated wide platesCrenellated wide platesCrenellated wide platesCrenellated wide plates

Crenellated wide plates containing butt & 
fillet welds

Fillet weld specimenButt weld specimen

Various crenellated
wide plates
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Summary of Results: Improvement of  Fatigue Crack Growth in Summary of Results: Improvement of  Fatigue Crack Growth in Summary of Results: Improvement of  Fatigue Crack Growth in Summary of Results: Improvement of  Fatigue Crack Growth in 

Crenellated Vs.  Constant Thickness Steel Panels [S420M]Crenellated Vs.  Constant Thickness Steel Panels [S420M]Crenellated Vs.  Constant Thickness Steel Panels [S420M]Crenellated Vs.  Constant Thickness Steel Panels [S420M]
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S420M Steel (Stress Ratio = 0.1; Kc = 250.43 MPa.sqrt(m); KIC = 200.85 

MPa.sqrt(m))

CP:Test

Sim: CP: No PFA

Sim:CP: PFA

CTP:Test

Sim:CTP: Sim:PFA

CP: Crenellated Panel
CTP: Constant Thickness Panel

Variable 
Thickness Panel

Includes PFA & 
LEFM Theory

Ref: Sefika Elvin EREN, ‘Advancing The Damage Tolerance Of Laser Beam Welded Steels Using Crenellation Technique, 

20.11.2011, Ph.D. Thesis in Structural Integrity, by Dipl.-Ing. Imperial College London, UK 
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PART 1: Fracture Toughness Determination
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Residual Strength Capability Equation

(A Relationship Between Crack Length & Applied Stress)

PART I: Fracture Toughness Determination [FTD]

Mixed mode fracture and thickness parameters:

μ is the thickness correction factor

K is the thickness correction factor

β is 1.3 and 0.127 for the plane stress and strain conditions, respectively

(Theoretical Background)
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Ref: Bahram Farahmand a, Kamran Nikbin, Predicting fracture and fatigue crack growth properties using tensile 

properties, Engineering Fracture Mechanics 75 (2008) 2144–2155

Fracture Toughness Determination 

(Theoretical Background)
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PART II: Fatigue Crack Growth [FCG] 
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Forman-Newman-de Koning (FNK) 

Crack Growth Rate Empirical 

Relationship -NASGRO

Threshold 

Region

Paris 

Region

Accelerated 

Region

FNK Equation Variables:
C, n, p, and q ~ empirically derived constants comes from tests or virtual testing

R                    ~ stress ratio

∆K                  ~ stress intensity factor range

∆K
th

~ threshold stress intensity factor

f ~ crack opening function (incorporates the effect of closure behavior on crack growth rate under constant 

amplitude loading for plasticity-induced crack closure, as defined by Newman)

(Theoretical Background)
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G: strain energy release rate

K: stress intensity factor; Kth: threshold stress intensity factor; Kc: critical stress 

intensity factor, N: cycles; a: crack length

Compute Stress Intensity Factor using FE and VCCT
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PART III - Methodology : Virtual Crack Closure Technique (VCCT)

Ref: B. Farahmand, C. Saff, De Xie and F. Abdi, “Estimation of Fatigue and Fracture Allowables For Metallic Materials Under Cyclic Loading”.  

AIAA-2007-2381, Honolulu, Hawaii, April, 2007.
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PART III - Methodology: Critical Damage and Fracture Events

PFA
•Determine: 5 stages of damage mechanism, 

damage pattern & crack path, failure mechanisms.

•Advantage: not requires predefined crack path.

•Disadvantage: removing damaged elements 

can create stress singularity.

Fracture Mechanics Theory
•Disadvantage: predefined crack path, 

fracture  toughness

•Advantage: stress singularity

Ref: Xie D and Biggers, Jr. SB, “Progressive crack growth analysis using interface element based on the virtual crack closure technique, “, 
Finite Elements in Analysis and Design, 2006, Vol 42, page 977-984.

Damage Initiation/growth,  and Fracture initiation/growth, Residual Strength

Crack growth strategy in composite under 

static loading with GENOA/PFA

Displacement

Lo
ad

1212

12
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Part 1: Fracture Toughness Prediction Vs. Test (Steel S420M)Part 1: Fracture Toughness Prediction Vs. Test (Steel S420M)Part 1: Fracture Toughness Prediction Vs. Test (Steel S420M)Part 1: Fracture Toughness Prediction Vs. Test (Steel S420M)

Output: Fracture Toughness vs. Thickness

Ref: B. Farahmand, “Fatigue and Fracture Mechanics of High Risk Parts”, Chapman and Hall, 1997
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Part 1: Fracture Toughness [S690 QL]Part 1: Fracture Toughness [S690 QL]Part 1: Fracture Toughness [S690 QL]Part 1: Fracture Toughness [S690 QL]

Plane Strain 
Fracture 

Toughness

Plane Stress 
Fracture 

Toughness @ 
6mm

KC @ 6.0mm = 151.6 MPa.sqrt(m)

KC @ 11.54mm = 130.0 MPa.sqrt(m)

KIC = 83.25 MPa.sqrt(m)

Plane Stress 
Fracture 

Toughness @ 
11.45mm

Test @ 11.54 mm = 

131.68 MPa.sqrt(m)

Output: Fracture Toughness vs. Thickness

Input
Input: Stress-Strain Curve
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Part 2: Fatigue Crack Growth Prediction Vs. Test (Steel]Part 2: Fatigue Crack Growth Prediction Vs. Test (Steel]Part 2: Fatigue Crack Growth Prediction Vs. Test (Steel]Part 2: Fatigue Crack Growth Prediction Vs. Test (Steel]
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S420M Steel (Stress Ratio = 0.1; Kc = 250.43 MPa.sqrt(m); KIC = 200.88 MPa.sqrt(m))

GENOA FCG

Test

• Same FCG curve was used for both constant thickness and variable thickness panels. 

• For FE Analysis the blue curve was used to predict the a-N curve for constant thickness and 

variable thickness panels.

S420M Steel, 
R=0.1, K1C= 200.88 (MPa.sqrt(m))

S690QL Steel, 
R=0.1, K1C= 83 (MPa.sqrt(m))

Prediction VS Test
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PART 2: Fatigue Crack Growth (Steel S420M)PART 2: Fatigue Crack Growth (Steel S420M)PART 2: Fatigue Crack Growth (Steel S420M)PART 2: Fatigue Crack Growth (Steel S420M)

• Fracture Toughness value was taken from the test and KIC estimated from FTD code

• beta1, beta2 values were adjusted slightly to match the test curve (rotation of FCG curve)

• Kth Ratio was adjusted slightly to match the dKth value 

• Imperial Test Specimen stopped before possible net-section yielding (indicated by blue line)

• Software FCG curve shows net-section yielding region (right side of blue line)

• FCG Curve and Imperial Test are in good agreement
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Output: Fatigue Crack Growth Vs. dkInput

Predicted K1c

Net section yield



17 Alpha STAR Corp.

• Fracture Toughness (KIC and KC) values were estimated from FTD code

• beta1, beta2,Kth Ratio values were adjusted slightly

dK [MPa.sqrt(m)]

PART 2: Fatigue Crack Growth (Steel S690QL)PART 2: Fatigue Crack Growth (Steel S690QL)PART 2: Fatigue Crack Growth (Steel S690QL)PART 2: Fatigue Crack Growth (Steel S690QL)

Output: Fatigue Crack Growth Vs. dkInput

Predicted K1c
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Constant & Variable Thickness Specimens (Fatigue)Constant & Variable Thickness Specimens (Fatigue)Constant & Variable Thickness Specimens (Fatigue)Constant & Variable Thickness Specimens (Fatigue)
Constant Thickness

Variable Thickness

Various Crenellated M(T)200 
specimen of AISI 304 steel

Ref: "S.E. Eren, “Advancing the Damage Tolerance of Laser Beam Welded Steels using the Crenellation Technique,”, Ph.D. Thesis, Imperial College 

London, 2012",
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Used 12880 shell (S4R) element for full model & Virtual Crack Closure Technique combined with fatigue analysis and 
reading the fatigue crack growth curve from previous slide

a -N (S 420M  S te e l; R  =  0.1; F m a x  =  243.5 kN; 
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PART 3: Fatigue Crack Growth (Constant Thickness)PART 3: Fatigue Crack Growth (Constant Thickness)PART 3: Fatigue Crack Growth (Constant Thickness)PART 3: Fatigue Crack Growth (Constant Thickness)

(Steel S420M)
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Used 12880 shell (S4R) element 
for full model & Virtual Crack 
Closure Technique combined 
with fatigue analysis and 
reading the fatigue crack growth 
curve from previous slide

Fmax = 243.5 kN

Fmin = 24.35 kN

Stress Ratio = 0.1
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PART 3: Fatigue Crack Growth, Variable Thickness [S420M)PART 3: Fatigue Crack Growth, Variable Thickness [S420M)PART 3: Fatigue Crack Growth, Variable Thickness [S420M)PART 3: Fatigue Crack Growth, Variable Thickness [S420M)
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Used 3220 shell (S4) 
element for full model 
& Virtual Crack Closure 
Technique combined 
with fatigue analysis 
and reading the fatigue 
crack growth curve 
from previous slide
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a-N (S420M Steel; R = 0.1; Fm ax = 243.5 kN; 
Fm in=24.35 kN)

Sim: Variab le Th ickness

Half Crack Extension
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Crack Growth Peak are due to change in panel thickness

PART 3: Fatigue Crack Growth, Variable Thickness [S420M)PART 3: Fatigue Crack Growth, Variable Thickness [S420M)PART 3: Fatigue Crack Growth, Variable Thickness [S420M)PART 3: Fatigue Crack Growth, Variable Thickness [S420M)
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Half Crack 

ExtensionFmax = 243.5 kN

Fmin = 24.35 kN

Stress Ratio = 0.1

Variable Thickness 

Panel

Max 

Stress

Max 

Stress
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PART 3: Fatigue Crack Growth, Variable Thickness [S690QL)PART 3: Fatigue Crack Growth, Variable Thickness [S690QL)PART 3: Fatigue Crack Growth, Variable Thickness [S690QL)PART 3: Fatigue Crack Growth, Variable Thickness [S690QL)

1.56E+06cycles
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SUMMARY

� Life Assessment of metallic components can be performed  Progressive Failure 
Analysis

� To precisely model the statically/cyclically loaded parts, GENOA recommends its 
unique 4-steps approach
� PART 1 : Fracture Toughness Determination (FTD); requires full material SS curve 

� PART II : Fatigue Crack Growth (FCG) Behavior (da/dN versus ∆K)

� PART III: Progressive Failure Analysis (PFA) in conjunction with Virtual Crack Closure 
technique (VCCT) for linearly elastic materials and Discrete Cohesive Zone Modeling 
(DCZM) for parts made of softer material

� Each above mention PART Steel (S420M, and S690QL)   were validated at RT

� Improvement of  Fatigue Crack Growth in Crenellated Vs.  Constant Thickness Steel 
Panels

� These predictive methods are anticipated to reduced fatigue testing and expenses at 
the coupon and component scales


